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Chapter 1
A Quick Course in Quantum Mechanics

This book is concerned with the quantum theory of fields satisfying
linear equations of motion. As a prerequisite, one needs to understand
the quantum theory of particles, which is related to field theory as
finite-dimensional linear algebra is related to functional analysis. In
particular, we need to treat the simplest linear quantum system, the
harmonic oscillator.

CLASSICAL MECHANICS: THE CANONICAL FORMALISM

The dynamics of a typical mechanical system is described by a
system of second-order ordinary differential equations, the Newtonian
equations of motion:

d*x dx
= F(x, - ,t) : (1.1)

Often the force F is the negative of the gradient of a potential function,
V(x). In the simplest situation, x(-) is a function from R (the domain of
the time variable) to R? (the configuration space of the system), where
d equals 3n for a system of n particles in the real world of dimension
3. (More generally, R? may be replaced by some other manifold, and
the time may need to be restricted to a subinterval of R, but such
complications are not relevant to our present concerns.)

Let x = dx/dt. Suppose that (1.1) arises as the Euler-Lagrange
equation of a problem in the calculus of variations: to extremize the

action functional ,
2

S = L{x(t),%(t),t) dt.

1

L is called the Lagrangian of the system. The functions x which ex-
tremize S satisfy

d (0L oL .
E(a?ﬁ)z&ﬁ G=1, ..., d) (1.2)
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These are the Lagrangian equations of motion.

For example, from the Lagrangian (with d = 1)

2

L=1imz? - 222
2

1
2mw z

we obtain %(ma’c) = —mw?z, which is equivalent to the Newtonian
equation

F4+wiz=0.
This system is the one-dimensional harmonic oscillator of mass m and
frequency w; if w = 0 it becomes a free particle (in one dimension), and

if w? is replaced by a negative number, one has a “runaway” particle
(the solutions being exponential).

The canonical momentum conjugate to z’ is

_ 0oL
Pi = g5
The Hamiltonian is defined by
H=-L+ :i‘jpj ,

where a sum over j is understood. For the harmonic oscillator, for
example, we have p = mz and H = #pz + %mwzxz. In the more
general class of problems usually studied in quantum mechanics,

1
H=_—p?’+V(x).
om P +Vx)
H can be interpreted as the energy of the physical system, but its main
significance for the general formulation of mechanics lies elsewhere: Let
us regard H as a function of x and p (rather than of x and x). (This
is a Legendre transformation; a mathematically precise reference on
Legendre transformations (in a different context) is Maslov & Fedo-
riuk 1981, Sec. 1.3.) Then (1.2) is easily seen to be equivalent to the
Hamiltonian equations of motion,
dxj OH dpj O0H

Phase space is R?¢ with the coordinates (x,p). (More generally,
the phase space is the cotangent bundle of the manifold which serves as
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configuration space; p(t) is a cotangent vector and %(t) a tangent vector
at the point x(t). This accounts for the placement of the index on z and
& as a superscript.) Thus, the second-order differential system (1.1) or
(1.2) has been replaced by a first-order system, (1.3), in a space of twice
the dimension. A pure state of a classical system is a point in phase
space (as opposed to an impure or mixed state, which is a probability
distribution on phase space). An observable is just a function of x
and p. We measure the observable A(x,p) simply by “looking” at
the system and observing A to have its value at the point of phase
space where the system happens to be! By measuring 2d independent
observables, such as x and p themselves, exactly and simultaneously,
we completely determine the state.

(QUANTUM STATES AND OBSERVABLES

In microscopic physics, observations are inherently probabilistic.
A pure state of a quantum system is a one-dimensional subspace of a
complex Hilbert space, H. The subspace is traditionally represented
by one of the vectors in it, normalized (i.e., ||¥|| = 1). ¥ is determined
by the state only up to phase, but one speaks informally of “the state
¥” when there is no chance of confusion. An observable is represented
by a self-adjoint operator in H. Often the operator is unbounded, and
hence its domain is a dense subspace of H, not the whole space. When
the observable A is measured, its expectation value is

(A) = (T, AT) = (T]A|T). (1.4)

The fundamental postulate of the physical interpretation of quantum
theory is that the average of the results of many experiments to measure
A on identical systems under identical conditions is given by the formula
(1.4).

Notational remarks: The middle member of (1.4) is an inner prod-
uct in H, reexpressed in the last member in Dirac notation. I use the
conventions standard in physics, wherein the complex conjugate of a
number z is denoted z* (not %), and the adjoint of a matrix or operator
Ais AY (not A*). Furthermore, the inner product is linear in the right
variable, not the left:

(U,28) = 2 (T,®), (2¥,2)=2*(T,d).
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In the Dirac notation, where (¥,®) = (¥|®), the angular brackets
are thought of as permanently attached to the vectors; thus “|®)” is
a typical element of H, and “(¥[” is the linear functional defined by
taking the inner product of the argument vector with ¥. (By the Riesz
theorem, all linear functionals on H (elements of the dual space of H)
are of this form.)

As a first example, consider a purely canonical system, where
H = L%R?). That is, the vectors are complex-valued, square-
integrable functions ¥(x) (the famous “wave functions”). The operator
representing the position observable z7 is simply multiplication by the
variable 7. The observable p; is represented by the operator —i 8/9x7,
in appropriate units (that is, units in which Planck’s constant, &, equals
1 — which I shall always use).

This system has an alternative description by functions \il(p) Now
the momentum observable is represented by multiplication by p; , and
the position by +i9/0p; . ¥ is just the Fourier transform of ¥: these
two distinct square-integrable functions are two different representa-
tions of the same vector in the abstract Hilbert space of physical states.

A more complicated example is presented by a (nonrelativistic)
particle of spin 3. In this case the Hilbert space is £L2(R3) @ £L2(R?®).
That is, the vectors are pairs of square-integrable functions, ¥,(x)
(a = 1 or 2). In addition to x and p, there are some fundamental
observables of the theory which are represented by matrices acting on
the index a (leaving x alone):

170 1 1/0 —i 1/1 0
Sl:§<1 0)’ S2_§<z‘ 0)’ 53_'5(0 —1>'

These observables are the components of the particle’s spin, or intrinsic
angular momentum, in the three directions of physical space. They
have no counterpart in the classical phase-space formalism.

The commutator of two operators is
[A,B]= AB — BA.
In the examples, the commutators of the basic observables are
[xj’pk] = iéi

and
[S1,52] = 1S53
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with its cyclic permutations; also, the various components of x or of p
commute among themselves, and the positions and momenta commute
with the spins. If [A, B] # 0, then A and B can’t be measured simul-
taneously. (Here “measured” means not only that a certain numerical
value is experimentally obtained, but also that the physical system
is left in such a state that the identical value would with certainty
be obtained if the measurement were repeated immediately.) That is,
states characterized by “sharp” values of A necessarily have spread-out
probability distributions for measurements of B. A pure state can, at
best, be characterized by the values of “a complete set of commuting
observables”, not of all observables.

If these commuting observables all have totally discrete spectra,
then there is a orthonormal basis for H whose elements are labelled
by their possible eigenvalues. (This is what it means for the set to
be “complete”.) That is, if the set comprises, say, three observables,
{A1, Az, A3}, then there are vectors |y, ag,a3) (for each «; in the
spectrum o(A;)) such that

Ajlar, oz, a3) = a]or, ag, a3), etc.,
and for any normalized ¥ € H,

‘II =" Z w(al7a27a3)lalaa2>a3>v
aj€o(A;j)

Z [¥(on, ez, 03)f = 1.

aj€c(Aj)

Finally, |1(1, o, 3)|? is the probability of finding A; to have the
value or; when the three observables are simultaneously measured.

If continuous spectra occur, we can no longer speak of basis vec-
tors, but the representation of ¥ by a coefficient function ¥ is still
valid. For example, the spin—% particle has a complete commut-
ing set {z!,z2%,23, 53}, and the wave function ¥,(x) = y(x,a) €
L2(R3) @ L2(R3) is the representation of a state relative to that choice

of basic observables. (An alternative choice might be {z',ps,ps,S1}.)

Also,
2
3 j (@)
a=1 |4
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is the probability that the particle will be found to be in the set V ¢ R3
with either of the allowed values (:i:%) of Ss.

Note that an equation of motion is inadequate to specify a quan-
tum system. We must also know what the observable operators are.
In many cases the commutation relations essentially uniquely deter-
mine the operators. More precisely, the abstract algebra defined by
the commmutation relations has a unique irreducible representation
up to unitary equivalence. For example, the Stone—Von Neumann the-
orem for the canonical commutation relation, [z, p] = i, and its finite-
dimensional generalizations state that (under technical assumptions
which are not entirely innocent, since they eliminate the elementary
example of “a particle in a box”) the only quantum system support-
ing those commutation relations is the one built on the Hilbert space
L?(R?) as described above. (See, for instance, Putnam 1967, Chap. 4.)
In other elementary cases the contrary is true, however. For instance,
the two-dimensional (spin %) representation is only one of the infinite
sequence of representations of the SU(2) Lie algebra, [S;,Ss] = 53
etc. Different spin representations represent different physical systems
(different kinds of particle), rather than different states of a single sys-
tem. Although quantum field theory, as we’ll see, can be regarded
as an infinite-dimensional generalization of the canonical commutation
relations, the Stone-VonNeumann theorem does not apply there, and
inequivalent representations do exist. (See Segal 1967, and Wightman
1967, Secs. 6-7.) (That is, there are distinct sets of operators satisfy-
ing the commutation relations; these sets are essentially different, not
transformable into one another by recoordinatizations of the Hilbert
space like the Fourier transform of £2(R?).) Therefore, the passage
from a formal algebra of observables to a full quantum theory in a
Hilbert space is a very nontrivial step in field theory. Apart from the
thorny technical problems, the choice of a physically appropriate repre-
sentation is a major conceptual issue, especially in the context of curved
space-time. In field theory the inequivalent representations can some-
times represent different physical configurations of the same system,
although by no means are all representations physically meaningful.

QUANTUM DYNAMICS: THE HEISENBERG PICTURE

Quantum field theory is usually developed in the Heisenberg pic-
ture, a formulation in which the operators satisfy equations of motion
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like those of the classical observable quantities they represent.

Let us solve the equation of motion of the harmonic oscillator,
F+w?z =0,

with operator initial data. Because of the linearity of the equation, this
can be done by simply writing down the standard general solution and
interpreting the arbitrary constants in it as operators. We have

z(t) = z(0) coswt + % z(0) sinwt, (1.5)
where £(0) = p(0)/m. (When w = 0, this reduces to

z(t) = 2(0) + 1% t, (1.6)

which classically is the trajectory of a free particle.) The derivative
of (1.5), times m, provides a formula for p(t). At ¢t = 0 we take the
canonical operators to have their usual (Schrédinger) representation,
discussed above:

z(0) =z (the multiplication operator), p(0) = —i % (L.7)
Then (1.5) defines z(t) and p(t) for each ¢t € R as operators in L2(R).
It is easy to see that they satisfy the canonical relation, [z, p][ =t

By the Stone—VonNeumann theorem, these operators are unitarily
equivalent to those in (1.6); I shall exhibit later the unitary operator
connecting them. However, they are quite distinct as concrete oper-
ators in the space of wave functions, £2. The physical interpretation
of this situation is that (¥|z(¢)|¥) and (¥|p(t)|¥) are the expectation
values of the position and momentum if those quantities were to be
measured at time ¢ with the particle in the state ¥. The state itself is
a time-independent concept (at least so long as the system evolves un-
der its internal dynamics, without interaction with external agencies).
The state ¥ is an abstract object in a Hilbert space, H. It is repre-
sented by a function ¥(x) € L£?; this representation has been arbitrarily
chosen to be the one which gives directly the probability density for po-
sition measurements at ¢ = 0. The probability densities for momentum
measurements and for position measurements at other times are given
similarly in other representations; in this one, at least the expectation
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values for such measurements can be calculated from (1.5), using the
concrete form of the inner product, (¥, ®) = [* U(z)*®(x)dz.

It is interesting to note that (when w is defined as I have done)
the classical equation of motion is independent of the mass, m, but
different values of m denote physically different quantum systems: The
relation between & and p depends on m, and hence so will the expected
results of measurements of = at later times, for a given initial wave
function. On the other hand, m may be eliminated from the formalism
by redefining x to absorb a factor /m. To concentrate attention on
the w dependence, I henceforth set m = 1.

Let’s treat the harmonic oscillator in the Hamiltonian approach.
Recall that we have H = 1p® + 1w?2? and hence from (1.3) the equa-
tions of motion

dz dp 9

'E; =p, *('i? = —WwWZ.
We shall solve this by the method of creation and annihilation opera-
tors: Let

v=—z(a+d),  p=-ivia-a) (L8)

so that
1 1 .1 t 1 1 Lo =1
asi(w2x+zw 2p), a =§(w2ac—zw Zp).

(Classically all these quantities are complex numbers, and at is simply
a*. In quantum mechanics, z and p are self-adjoint operators, so al is
indeed the adjoint of the operator a — at least if we ignore technicalities
about the domains of unbounded operators.) It is easy to see that the
equations of motion become

d 1

—a = —iwa, —al = +iwal,

dt dt

with solution
a(t) = e it a(0), a(t)T = etivt a(O)T.
We then arrive at

z(t) = [a(0)e™* + a(0)te™!],

1
Ve _ | (1.9)
p(t) = &(t) = —iviw [a(0)e™*" — a(0)Te™?],
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which are equivalent to (1.5).

This construction is the prototype of the quantization of a field
theory satisfying a linear, time-independent equation of motion. Note,
however, that it does not apply to the case w = 0, where the definition
of a breaks down. Nor does it apply when w? is replaced by a negative
number. As we’ll soon see, it is through the annihilation-creation op-
erators that the notion of “particles” enters the formalism. We must
therefore be prepared to encounter situations where the particle con-
cept is not applicable. If our most fundamental model of nature is a
field theory, then we are saying that fields are more fundamental than
particles.

Now consider a more general quantum-mechanical system, cor-
responding to equations of motion which are time-independent (au-
tonomous) but not necessarily linear. Ordinarily it is assumed that
there is a self-adjoint Hamiltonian operator, H, such that the equation
of motion for each observable operator is equivalent to

dA

— ={[H, A]. 1.10

— = ilH, 4] (1.10)
This is the Heisenberg equation of motion. This much can be true even
for a time-dependent dynamics, in which case H is a function of time
as well as of the basic observables of the theory. If H is independent of
time, however, the solution of the Heisenberg equation can be written

A =U@)"TAOQ)U@®), Ut)=e ",

U(t) is a unitary operator, so U(t)™* = U(t)f = etit¥.

In purely canonical cases, H is obtained from the classical Hamil-
tonian function on phase space, H(x, p), by substituting —i 8/8z7 for
p; and interpreting z’ as a multiplication operator. This prescription
makes elementary sense in the Schrodinger representation as long as H
is polynomial in its dependence on p, and one can then verify that

. OH 0H
1 1 = _— 1 )= — -
i[H, 2] = p; i[H,p;] 507

as needed for consistency of (1.10) and (1.3).

Advanced remarks: Nonpolynomial terms in H(x, p) may be in-
terpreted via the Fourier transformation (if the term is independent
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of x) or the calculus of pseudodifferential operators [Petersen 1983,
Treves 1980, Taylor 1981]. However, there is an ordering ambiguity:
Since the operators z and p don’t commute, it is unclear whether the
classical function z2p? should be interpreted as ( z2p? + p*2?) or zp’x
or %(a:pxp + pzpz) or something else. (Since the operator should be
formally self-adjoint, one can at least restrict attention to expressions
with palindromic symmetry, as I have here.) Consequently, there are
in principle many quantum systems corresponding to a given classical
system; their Hamiltonians differ by terms involving the canonical com-
mutator, [z, p] = hi, and the presence of h (in general units) indicates
why such terms should disappear in the classical limit. H. Wey!’s at-
tempt at a resolution of this ambiguity [Weyl 1927; Moyal 1949] was a
precursor of what is now called the Weyl calculus for pseudodifferential
operators [Grossmann et al. 1968; Hérmander 1979]. Such issues can
be ignored in elementary quantum mechanics, because the Hamiltoni-
ans of most physical systems are quadratic in p with quadratic term
independent of x. (An x-dependent linear term is not considered to
present a problem: f(x)p is interpreted in the first way that comes to

mind, %(fp + Pf))

THE SCHRODINGER PICTURE

The nonrelativistic quantum mechanics of particles is usually con-
ducted in a different formalism, where the operator representing an
observable A is the same at all times, while the states evolve. (This
Schrodinger picture is not the same thing as the “Schrodinger [or po-
sition] representation”, which is a particular realization of the states
as wave functions.) The equation of motion of the states is the (time-
dependent) Schrédinger equation,

ZE_H\II

In a purely canonical theory with H polynomial in p, this is a linear
partial differential equation. For example, for the harmonic oscillator
(withm=1) it is

6\11 oU(z,t)  10°0 2,2

= 0.

TR R =R
In most cases of interest the linear partial differential operator H is of
the elliptic type; by hypothesis, it is self-adjoint.
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When H is independent of ¢, the solution of the initial-value prob-
lem for the Schrédinger equation is

T(t) = e™"H (0).

What this means in concrete terms is that the equation can be solved by

separation of variables: If one looks for solutions of the form ¥(¢,z) =
¥(x)T(t), one finds that T(t) = e *F! and

Hy = By

for some number F. (This is called the time-independent Schrédinger
equation.) Therefore, the problem reduces, in principle, to finding the
eigenvectors of the self-adjoint operator H, or, more generally, the spec-
tral representation of H:

Suppose, first, that H possesses a complete set of eigenvectors
{¢]}7
H"/’j = Ej¢j, IW;” =1

Then the initial data for the Schrédinger equation can be expanded as
V(O) =) ey, o= (¥;1%(0).
Jj=1

(In the Schrodinger representation the ¢, will be functions of x, and
the coefficients have the formula ¢; = [ 4;(x)*¥(0,x) d%.) Therefore,

U(t) = icj@bje_w"t = e "y (0). (1.11)
ij=1

If H has continuous spectrum, then the solutions of the partial
differential equation Hv) = E generally are not square-integrable and
hence are not vectors in H = £L2(R?). Nevertheless, at least in simple
cases one can complete the classical procedure of solution by separation
of variables to obtain the general solution as an integral over such
solutions, regarded as “generalized eigenvectors”. (This construction
provides a concrete realization of the abstract spectral theorem, which
generalizes the eigenvector expansion to deal with the most general
self-adjoint operators.) We delay a detailed discussion to Chapter 2,
and consider a few fundamental examples here.
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Example 1: The free particle in three-dimensional space.
The time-independent Schrédinger equation is the Helmholtz equation,

Hy = - %v% = Ei.

Its basic solutions are

2
E—k

— ikx -
Q/Jk(X) =e€ ) 29

(k = |k|). It follows that the general solution of the time-dependent
equation is

\I/(t,x) — (27‘_)—%/ dSkeik‘xe-th/Zm IZJ(k),

R3

where

(k) = (27)" % /113 Pz e ** T (0,x).

Thus the eigenfunction expansion in this case is the Fourier transform
(and we refer to the general theory of the Fourier transform to justify
the normalization factors (27)~%).

Since (py) (k) = k&(k), what we have really done here is to
pass to a representation of the Hilbert space in which the momentum
observable, p, is diagonal. The three components of p make up the
complete set of commuting observables. But since E is a function of
p in this problem, we can also regard the eigenfunction expansion as
an integral over E, supplemented by an integration over the angles in
k-space:

oo 27 ™
(2m)~ % / d*k = (2m)~% / k2 dk / Ay / sin Oy dfy
0 0 0

= f du(E) / 40,

where, since k = +/2mE, we calculate that du(E) = (2#)_%m% X
V2EdE. Returning momentarily to the general problem, we antici-
pate in analogy with this example an eigenfunction expansion with the
schematic structure

v = [ auE) Y eulB)e i ).

o4
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Here « is the eigenvalue of another observable that goes together with
H to make a complete commuting set, or an n-tuple of eigenvalues of a
set of such observables. The summation range of o may depend on E,
and, as the example shows, o may itself be a continuous variable. (The
notation has been chosen to make this equation a generalization of the
discrete eigenfunction expansion (1.11), but in terms of a notation used
earlier in this chapter, ¥ g , is |E, az,...) and co(E) is P(E, oz, .. .).)
In general, fa( ) du(E)” entails a summation over discrete eigenvalues
of H and an integration over the continuous spectrum of H; thus u is
a Stieltjes measure with support in o(H), the spectrum of H. As the
example of a free particle shows, even when the spectrum is completely
(and, for the experts, absolutely) continuous, it may be convenient
to normalize the measure as something different from the Lebesgue
measure.

Example 2: The harmonic oscillator. With m = 1, the equation
is
1 8% 22
~ 5 5.7 + 5 Y = Enp.
I summarize two well known methods of solving this problem (Messiah
1961, Chap. 12 and App. B3).

The first method is to solve the differential equation directly in
terms of known special functions. The square-integrable eigenfunctions
are

Hy =

Yo(z) = Ny Hy(Vwz) e""x2/2,

with eigenvalues
E,=(n+3)w, n=0,1,2, ....

H,, is the Hermite polynomial of degree n, and N, is a certain normal-
ization constant. This operator has a discrete spectrum; (1.11) applies.
The nth eigenfunction has n — 1 nodes (zeros), and it is oscillatory
in the region where F, exceeds the potential, exponentially decaying
outside that region. The figure shows the potential (V = 2372) and
two typical eigenfunctions, one of them raised on the gra,ph for clarity.

The second method is an algebraic trick peculiar to this potential.
In studying the oscillator in the Heisenberg picture, we introduced the
non-self-adjoint operator

a= (w%x + tw” %p) .

N
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V, ¢
5 + const
V
Yo
x

A bit of calculation shows

[a,al] =1, H=wala+ lw.
Define

N =a'a

Then we find that
Na=a(N-1), Nal=al(N+1).

Now suppose we have a vector |n) (n € R) such that N|n) = n|n).
Then
Naln) = (n — 1)aln), Na'ln) = (n + 1)al|n).

That is, a|n) and af|n), if they are not zero, are also eigenvectors of V.
Also, we find that the square of the norm of a|n) is

(n|ataln) = n (n|n).

Therefore, n must be nonnegative. Furthermore, if n = 0, then a|n) =
0, and conversely (whereas at|n) # 0 always). By induction, n must be
a nonnegative integer, since the sequence of eigenvalues corresponding
to the vectors of the form a---a|n) is not allowed to jump over 0.
Starting from |0), we can construct the normalized eigenvectors

—_ AR

n)=——la 0).

n) = = (a")"10)

(Do not confuse |0) with 0, the zero vector in the Hilbert space!) The
action of the creation and annihilation operators on these basis vectors
is

alln) = vn+1|n+1), alny = v/nin —1).
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We have found a Hilbert space (the closed span of the orthonormal
basis {|n)}) in which the operators z, p, and H act with their correct
commutation relations. Each of these operators is actually self-adjoint
and hence has a spectral representation; in the representation where
z acts diagonally, |n) is identified with the Hermite function %, (z)
previously discussed. The spectral representation of H is, of course, the
one we are looking at, since H is manifestly diagonal here. One thinks
of |n) as representing a state in which n “excitations” or “quanta” are
present. N counts such excitations, a' creates them, and a destroys
them. Apart from the constant term %w, the energy (eigenvalue of
H) is proportional to n. This construction is the prototype for the
introduction of particles into quantum field theory. Particles are merely
excitations of a field.

If the Hilbert space spanned by {|n)} is not the entire Hilbert
space of the system, then any eigenvector of H linearly independent
from it would, by the same argument, yield another copy of the whole
sequence of eigenvectors. This would mean that the representation of =
and p is not irreducible; there are additional, independent observables
in the theory. For example, a spin—% oscillator’s Hilbert space is the
direct sum of two copies of this elementary oscillator space, with basis
{|n, £)}; and a two-dimensional oscillator’s space is the direct product,
with basis {|n1, n2)}.

Of course, there are some gaps in this argument. How (without
appealing to the Stone—VonNeumann theorem) does one exclude the
possibility of a representation in which IV has continuous spectrum?
Or the possibility that some steps in the argument are meaningless
because a vector is not in the domain of the unbounded operator that
is applied to it?

Nevertheless, this example illustrates that the formal algebra of
commutation relations can carry one a long way. It even separates the
main features of the model system from irrelevant details of special-
function theory.

Example 3: The repulsive oscillator. The Hamiltonian

2.2

H = ip? - iuiz
classically describes an exponentially runaway particle. Titchmarsh
1962, Theorem 5.10, shows that H is essentially self-adjoint (i.e., defines

a self-adjoint operator in £L2(R) without the aid of extra boundary
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conditions at infinity), and that ¢(H) = (—o0,00). (The spectrum is
continuous and is unbounded below.) The figure shows the potential
and a typical eigenfunction (a parabolic cylinder function plotted from
data in the National Bureau of Standards Handbook (Abramowitz &
Stegun 1968)). Note the transitions from exponential to oscillatory
behavior where the potential crosses the energy of the eigenfunction (a
small negative number in this case).

Viy

N

&1

Models such as this, with arbitrarily negative energy, are in phys-
ical disrepute. The idea is that the slightest perturbation of the dy-
namics would introduce a coupling between the repulsive oscillator and
the other, normal degrees of freedom of the world. If such an object
existed, therefore, there would be a dynamical instability in which the
energy of the runaway particle tumbled to an arbitrarily low value while
the energy of the rest of the world grew without bound. Thus, the pre-
dictions of such a theory could not be physically plausible. If an H of
this sort arose by linearization of some physically realistic theory, one
would expect that the neglected nonlinear interactions actually halt the
runaway motion and stabilize the system. The linearized theory would
therefore be a bad approximation to the full theory. Nevertheless, field
theories with inverted-oscillator potentials are amusing to contemplate
and raise some important issues about quantization procedures and the
relation between fields and particles (see the appendix).

THE CONNECTION BETWEEN THE TWO PICTURES

If H is independent of ¢, the solution of the Schrédinger equation,
10V /0t = HY, can be written

U(t,z) =U(t)¥(0,z), U(t)=e ¥,
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One can redefine the state vectors and operators by a time-dependent
similarity transformation:

T=U@®) o), A@R) =U@)TAU®).

Then the new state vector is independent of time, while the observable
operators evolve according to the Heisenberg picture. All the matrix
elements (¥|A|®), hence all physical predictions of the theory, are un-
changed.

If H depends on t, then the quantum dynamics is given by a two-
parameter family of operators, U(#3, 1), rather than the one-parameter
Lie group, U(ts — t;) = e~i{(*2=t)H  (In the Schrddinger picture, for
example, U(tq,t1) maps initial data at ¢; to the wave function at time
t2.) In quantum theories with finitely many degrees of freedom, one
can still use these operators to move back and forth between Heisenberg
and Schrodinger pictures. In quantum field theory, however, especially
with a time-dependent dynamical law, the very ezistence of a U (or an
H, or a Schrodinger picture) is not a foregone conclusion.

THE CLASSICAL LIMIT

Under what circumstances do we get classical behavior from a
(canonical) quantum system? Let us consider a particle of mass m in
one dimension. For the details see Messiah 1961, Chap. 6; see also
Maslov & Fedoriuk 1981 for a different aspect of the question. The
essential conclusions can be carried over to field systems (at least to
bosonic ones).

The important question is: What are the ratios of the character-
istic lengths of the situation at hand?

]2
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(1) For a classical description of the position to be meaningful,
the wave function ¢(z) must be sharply peaked about its mean or
expectation value, (z). That is,

D=

Az = {(z — (z))?)

must be small compared to lengths of experimental significance.

(2) If we demand localization in phase space, not just in configu-
ration space, then we must also have Ap small compared to momenta
of experimental significance. Here, however, we must accept the impli-
cations of the celebrated uncertainty principle, which in this context is
a theorem of classical Fourier analysis in £?(R):

(Az)(Ap) > % for any 7.

Therefore, the product of the “experimentally significant” units of z
and p must be sufficiently large for the classical picture of the system
to be valid.

(3) Let’s suppose that we don’t care about measuring p for its
own sake. We still want a classical description of z over a significant
time interval. From (1.6),

Az(t) = Az(0) + % t.

So to keep Az small we must keep mtAx

oscillator, from (1.5), we must keep (mwAz)~! small.) In particular,
this means that potentially classical behavior is associated with large

small. (For the harmonic

m. This classical limit of systems, m — oo, is nonuniform in ¢ — and
also nonuniform in the state 1, as described by Az and Ap.

Parallel to the mathematician’s sensitivity to nonuniform conver-
gence is the physicist’s dictum that only limits of dimensionless param-
eters have intrinsic significance. The classical limit of quantum theory
is often said to be the limit A — 0, but % is a red herring. One can
always choose units where % equals 1. In fact, to do otherwise distracts
attention from the genuine small parameters in the problem at hand —
which are ratios of i to other quantities with the dimensions of action
(length x momentum, or energy x time) — and from the accompany-
ing nonuniformities in the limit. (Nevertheless, taking h to zero is a



